Skip to content

Metering Data Structure and Usage

Overview

When data is written to a specific workspace, Guance will monitor and count the data volume in real-time. It records and stores the statistical information in the database according to the preset time cycle.

By combining DQL query statements, users can easily build a usage analysis dashboard. This dashboard provides intuitive data usage analysis, helping users gain insights into data flow trends, optimize resource allocation, and monitor data usage.

Data Structure

{
    "time": 1720584000000,
    "__docid": "fb4d3b817fdc08a266bfefe85049d279",
    "count": "0",
    "create_time": "1720591166343",
    "date": "1720584000000",
    "hour_count": "0",
    "project": "logging",
    "sub_project": "default",
    "workspaceUUID": "wksp_3c5cc6626cb64550b401347931fcf467"
}

Field Descriptions

Field Type Description Example
time int64 Metric time, in ms, e.g., 1720584000000 is equivalent to 2024-07-10 12:00:00, indicating the metric time range from 2024-07-10 12:00:00 to 2024-07-10 13:00:00 (left-closed, right-open) 1720584000000
date int64 Same as time
__docid string Unique identifier for a database record fb4d3b817fdc08a266bfefe85049d279
workspaceUUID string Workspace ID wksp_3c5cc6626cb64550b401347931fcf467
project string Metric project, detailed description below logging
sub_project string Metric sub-project, detailed description below default
count int64 Full metric count 2345
hour_count int64 Hourly metric data 1234
create_time int64 Actual write time to the database, in ms 1720591166343

Metric Project (project) Descriptions

Note⚠️: Full statistics use count for counting, while incremental statistics use hour_count for counting.

Metric project sub_project Statistic Cycle Statistic Method Description
Datakit Count datakit Hourly Full Datakit usage in a specific workspace
Total Site DataKit Count platform_datakit Hourly Full Represents the total datakit usage of the entire site, unrelated to specific workspaces
Synthetic Test Runs synthetic_test_runs Hourly Incremental
RUM PV Count rum_pv Hourly Full
RUM Data Rows rum_data_rows Hourly Incremental Resource, Action, LongTask, Error counts
RUM Raw Write Volume rum_bytes Hourly Incremental
Trace Count tracing Hourly Incremental
Tracing Raw Write Volume tracing_bytes Hourly Incremental
Event Data Rows keyevent Hourly Full
Data Forwarding to Customer S3 Object Storage data_forwarding_s3_bytes Optional values: logging/tracing/rum, representing backup information for corresponding data types Hourly Incremental
Data Forwarding to Customer Message Engine data_forwarding_kafka_bytes Optional values: logging/tracing/rum, representing backup information for corresponding data types Hourly Incremental
Data Forwarding to Customer OSS Object Storage data_forwarding_oss_bytes Optional values: logging/tracing/rum, representing backup information for corresponding data types Hourly Incremental
Data Forwarding to Customer OBS Object Storage data_forwarding_obs_bytes Optional values: logging/tracing/rum, representing backup information for corresponding data types Hourly Incremental
Data Forwarding to Default Storage Volume data_forwarding_default_bytes Optional values: logging/tracing/rum, representing backup information for corresponding data types Hourly Full
Data Forwarding to Default Storage Volume (Incremental) data_forwarding_delta_bytes
Security Check Data Rows security Hourly Incremental
Report Send Count report Every 5 minutes Incremental
Infrastructure Object Count object Hourly Full
Pipeline Processed Volume pipeline_processed_bytes Hourly Incremental
Sensitive Data Scan Volume sensitive_scan_bytes Hourly Incremental
Log Raw Write Volume logging_bytes Optional values: log multi-index index names Hourly Incremental
Log Data Rows logging Optional values: log multi-index index names Hourly Incremental
Time Series timeseries Hourly Full
Pipeline Volume Statistics pipeline_processed_bytes Hourly Incremental
Session Replay Count session_replay Hourly
Span Rows tracing_span Hourly
Profile Count profile Hourly
SIEM Scan Volume siem_scan_bytes Hourly
Job Run Count job_runs Hourly
SMS Send Count sms Hourly
Network Host Count network Hourly

Metric Data Query

# Using DQL statements, you can view the log write volume within a specific workspace for a day

metering::`*`:(sum(hour_count)) {project="logging", workspaceUUID="wksp_xxx"}

Feedback

Is this page helpful? ×