Dataway¶
简介¶
DataWay 是观测云的数据网关,采集器上报数据到观测云都需要经过 DataWay 网关。
Dataway 安装¶
- 新建 Dataway
在观测云管理后台「数据网关」页面,点击「新建 Dataway 」。输入名称、绑定地址后,点击「创建」。
创建成功后会自动创建新的 Dataway 并生成 Dataway 的安装脚本。
Info
绑定地址即 Dataway 网关地址,必须填写完整的 HTTP 地址,例如 http(s)://1.2.3.4:9528
,包含协议、主机地址和端口, 主机地址一般可使用部署 Dataway 机器的 IP 地址,也可以指定为一个域名,域名需做好解析。
注意:需确保采集器能够访问该地址,否则数据将采集将不成功)
- 安装 Dataway
DW_KODO=http://kodo_ip:port \
DW_TOKEN=<tkn_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX> \
DW_UUID=<YOUR_UUID> \
bash -c "$(curl https://static.guance.com/dataway/install.sh)"
安装完成后,在安装目录下,会生成 dataway.yaml,其内容示例如下,可手动修改,通过重启服务来生效。
dataway.yaml(单击点开)
# ============= DATAWAY CONFIG =============
# Dataway UUID, we can get it on during create a new dataway
uuid:
# It's the workspace token, most of the time, it's
# system worker space's token.
token:
# secret_token used under sinker mode, and to check if incomming datakit
# requests are valid.
secret_token:
# If __internal__ token allowed? If ok, the data/request will direct to
# the workspace with the token above
enable_internal_token: false
# is empty token allowed? If ok, the data/request will direct to
# the workspace with the token above
enable_empty_token: false
# Is dataway cascaded? For cascaded Dataway, it's remote_host is
# another Dataway and not Kodo.
cascaded: false
# kodo(next dataway) related configures
remote_host:
http_timeout: 30s
insecure_skip_verify: false
http_client_trace: false
sni: ""
# dataway API configures
bind: 0.0.0.0:9528
# dataway TLS file path
tls_crt:
tls_key:
# enable pprof
pprof_bind: localhost:6060
api_limit_rate : 100000 # 100K
max_http_body_bytes : 67108864 # 64MB
copy_buffer_drop_size : 8388608 # 8MB, if copy buffer memory larger than this, this memory released
reserved_pool_size: 4096 # reserved pool size for better GC
within_docker: false
log_level: info
log: log
gin_log: gin.log
cache_cfg:
# cache disk path
dir: "disk_cache"
# disable cache
disabled: false
clean_interval: "10s"
# in MB, max single data package size in disk cache, such as HTTP body
max_data_size: 100
# in MB, single disk-batch(single file) size
batch_size: 128
# in MB, max disk size allowed to cache data
max_disk_size: 65535
# expire duration, default 7 days
expire_duration: "168h"
prometheus:
listen: "localhost:9090"
url: "/metrics"
enable: true
#sinker:
# etcd:
# urls:
# - http://localhost:2379 # one or multiple etcd host
# dial_timeout: 30s
# key_space: "/dw_sinker" # subscribe to the etcd key
# username: "dataway"
# password: "<PASSWORD>"
# #file:
# # path: /path/to/sinker.json
下载 dataway.yaml,安装:
$ wget https://static.guance.com/dataway/dataway.yaml -O dw-deployment.yaml
$ kubectl apply -f dw-deployment.yaml
在 dw-deployment.yaml 中可通过环境变量修改 Dataway 配置,参见这里。
也可以通过 ConfigMap 外挂一个 dataway.yaml,但必须将其挂载成 /usr/local/cloudcare/dataflux/dataway/dataway.yaml:
注意事项
- Dataway 只能在 Linux 系统上运行(目前只发布了 Linux arm64/amd64 二进制)
- 主机安装时,Dataway 安装路径为 /usr/local/cloudcare/dataflux/dataway
- Kubernetes 下默认设置了 4000m/4Gi 的资源限制,可根据实际情况做调整。最低要求为 100m/512Mi
- 验证 Dataway 安装
安装完毕后,等待片刻刷新「数据网关」页面,如果在刚刚添加的数据网关的「版本信息」列中看到了版本号,即表示这个 Dataway 已成功与观测云中心连接,前台用户可以通过它来接入数据了。
Dataway 成功与观测云中心连接后,登录观测云控制台,在「集成」/「DataKit」页面,即可查看所有的 Dataway 地址,选择需要的 Dataway 网关地址,获取 DataKit 安装指令在服务器上执行,即可开始采集数据。
管理 DataWay¶
删除 DataWay¶
在观测云管理后台「数据网关」页面,选择需要删除的 DataWay ,点击「配置」,在弹出的编辑 DataWay 对话框,点击左下角「删除」按钮即可。
Warning
删除 DataWay 后,还需登录部署 DataWay 网关的服务器中停止 DataWay 的运行,然后删除安装目录才可彻底删除 DataWay。
升级 DataWay¶
在观测云管理后台「数据网关」页面,如果 DataWay 存在可升级的版本,版本信息处会有升级提示。
Dataway 服务管理¶
主机安装 Dataway 时,可用如下命令管理 Dataway 服务。
Kubernetes 重启对应的 Pod 即可。
环境变量¶
主机安装支持环境变量¶
主机安装的方式我们已经不再推荐,新增的配置项也不再支持通过命令行参数方式来配置。如果无法更改部署方式,建议安装(升级)完后手动修改对应配置。默认配置,参见上面的默认配置示例。
主机安装时,可以在安装命令中注入如下环境变量:
Env | 类型 | 是否必需 | 说明 | 取值示例 |
---|---|---|---|---|
DW_BIND | string | N | Dataway HTTP API 绑定地址,默认 0.0.0.0:9528 |
|
DW_CASCADED | boolean | N | Dataway 是否级联 | true |
DW_HTTP_CLIENT_TRACE | boolean | N | Dataway 自己作为 HTTP 客户端,可以开启一些相关的指标收集,这些指标最终会在其 Prometheus 指标中输出 | true |
DW_KODO | string | Y | Kodo 地址,或下一个 Dataway 地址,形如 http://host:port |
|
DW_TOKEN | string | Y | 一般是系统工作空间的数据 Token | |
DW_UPGRADE | boolean | N | 升级时将其指定为 1 | |
DW_UUID | string | Y | Dataway UUID,这个在新建 Dataway 的时候,系统工作空间会生成 | |
DW_TLS_CRT | file-path | N | 指定 HTTPS/TLS crt 文件目录 Version-1.4.1 | |
DW_TLS_KEY | file-path | N | 指定 HTTPS/TLS key 文件目录 Version-1.4.1 | |
DW_PROM_EXPORTOR_BIND | string | N | 指定 Dataway 自身指标暴露的 HTTP 端口(默认 9090) Version-1.5.0 | |
DW_PPROF_BIND | string | N | 指定 Dataway 自身 pprof HTTP 端口(默认 6060) Version-1.5.0 | |
DW_DISK_CACHE_CAP_MB | int | N | 指定磁盘缓存大小(单位 MB),默认 65535MB Version-1.5.0 |
Warning
Sinker 有关的设置,需安装完之后,手动修改。目前不支持在安装过程中指定 Sinker 的配置。 Version-1.5.0
镜像环境变量¶
Dataway 在 Kubernetes 环境中运行时,支持如下环境变量。
兼容已有 dataway.yaml
由于一些老的 Dataway 是通过 ConfigMap 方式来注入配置的(挂到容器中的文件名一般都是 dataway.yaml),
如果 Dataway 镜像启动后,发现安装目录中存在 ConfigMap 挂进来的文件,则下述 DW_*
环境变量将不生效。
移除已有的 ConfigMap 挂载后,这些环境变量方可生效。
如果环境变量生效,则在 Dataway 安装目录下会有一个隐藏(通过 ls -a
查看)的 .dataway.yaml 文件,可以 cat
该文件以确认环境变量的生效情况。
HTTP Server 设置¶
Env | 类型 | 是否必需 | 说明 | 取值示例 |
---|---|---|---|---|
DW_REMOTE_HOST | string | Y | Kodo 地址,或下一个 Dataway 地址,形如 http://host:port |
|
DW_WHITE_LIST | string | N | Dataway 客户端 IP 白名单,以英文 , 分割 |
|
DW_HTTP_TIMEOUT | string | N | Dataway 请求 Kodo 或下一个 Dataway 的超时设置,默认 30s | |
DW_BIND | string | N | Dataway HTTP API 绑定地址,默认 0.0.0.0:9528 |
|
DW_API_LIMIT | int | N | Dataway API 限流设置,如设置为 1000,则每个具体的 API 在 1s 以内只允许请求 1000 次,默认 100K | |
DW_HEARTBEAT | string | N | Dataway 跟中心的心跳间隔,默认 60s | |
DW_MAX_HTTP_BODY_BYTES | int | N | Dataway API 允许的最大 HTTP Body(单位字节),默认 64MB | |
DW_TLS_INSECURE_SKIP_VERIFY | boolean | N | 忽略 HTTPS/TLS 证书错误 | true |
DW_HTTP_CLIENT_TRACE | boolean | N | Dataway 自己作为 HTTP 客户端,可以开启一些相关的指标收集,这些指标最终会在其 Prometheus 指标中输出 | true |
DW_ENABLE_TLS | boolean | N | 启用 HTTPS Version-1.4.1 | |
DW_TLS_CRT | file-path | N | 指定 HTTPS/TLS crt 文件目录 Version-1.4.0 | |
DW_TLS_KEY | file-path | N | 指定 HTTPS/TLS key 文件目录 Version-1.4.0 | |
DW_SNI | string | N | 指定当前 Dataway SNI 信息 Version-1.6.0 | |
DW_DISABLE_404PAGE | boolean | N | 禁用 404 页面 Version-1.6.1 |
HTTP TLS 设置¶
要生成一个有效期为一年的 TLS 证书,您可以使用以下 OpenSSL 命令:
# 生成有效期一年的 TLS 证书
$ openssl req -new -newkey rsa:4096 -x509 -sha256 -days 365 -nodes -out tls.crt -keyout tls.key
...
执行该命令后,系统会提示您输入一些必要信息,包括您的国家、地区、城市、组织名称、部门名称以及您的电子邮件地址。这些信息将被包含在您的证书中。
完成信息输入后,您将生成两个文件:tls.crt(证书文件)和 tls.key(私钥文件)。请妥善保管您的私钥文件,并确保其安全性。
为了使应用程序能够使用这些 TLS 证书,您需要将这两个文件的绝对路径设置到应用程序的环境变量中。以下是设置环境变量的一个示例:
必须先开启
DW_ENABLE_TLS
,另外两个 ENV (DW_TLS_CRT/DW_TLS_KEY
)才会生效。 Version-1.4.1
env:
- name: DW_ENABLE_TLS
value: "true"
- name: DW_TLS_CRT
value: "/path/to/your/tls.crt"
- name: DW_TLS_KEY
value: "/path/to/your/tls.key"
请将 /path/to/your/tls.crt
和 /path/to/your/tls.key
替换为您实际存放 tls.crt
和 tls.key
文件的路径。
设置完以后,可以用如下命令测试 TLS 是否生效:
如果成功,会显示一个 It's working!
的 ASCII Art 信息。如果证书不存在,Dataway 日志中会有类似如下报错:
此时 Dataway 无法启动,上面的 curl 命令也会报错:
$ curl -vvv -k http://localhost:9528
curl: (7) Failed to connect to localhost port 9528 after 6 ms: Couldn't connect to server
日志设置¶
Env | 类型 | 是否必需 | 说明 | 取值示例 |
---|---|---|---|---|
DW_LOG | string | N | 日志路径,默认为 log | |
DW_LOG_LEVEL | string | N | 默认为 info |
|
DW_GIN_LOG | string | N | 默认为 gin.log |
Token/UUID 设置¶
Env | 类型 | 是否必需 | 说明 | 取值示例 |
---|---|---|---|---|
DW_UUID | string | Y | Dataway UUID,这个在新建 Dataway 的时候,系统工作空间会生成 | |
DW_TOKEN | string | Y | 一般是系统工作空间的数据上传 Token | |
DW_SECRET_TOKEN | string | N | 当开启 Sinker 功能时,可设置一下该 Token | |
DW_ENABLE_INTERNAL_TOKEN | boolean | N | 允许以 __internal__ 作为客户端 Token,此时默认使用系统工作空间的 Token |
|
DW_ENABLE_EMPTY_TOKEN | boolean | N | 允许不使用 Token 上传数据,此时默认使用系统工作空间的 Token |
Sinker 设置¶
Env | 类型 | 是否必需 | 说明 | 取值示例 |
---|---|---|---|---|
DW_SECRET_TOKEN | string | N | 开启 Sinker 功能时,可设置一下该 Token | |
DW_CASCADED | string | N | Dataway 是否级联 | true |
DW_SINKER_ETCD_URLS | string | N | etcd 地址列表,以 , 分割,如 http://1.2.3.4:2379,http://1.2.3.4:2380 |
|
DW_SINKER_ETCD_DIAL_TIMEOUT | string | N | etcd 连接超时,默认 30s | |
DW_SINKER_ETCD_KEY_SPACE | string | N | Sinker 配置所在的 etcd key 名称(默认 /dw_sinker ) |
|
DW_SINKER_ETCD_USERNAME | string | N | etcd 用户名 | |
DW_SINKER_ETCD_PASSWORD | string | N | etcd 密码 | |
DW_SINKER_FILE_PATH | file-path | N | 通过本地文件来指定 sinker 规则配置 |
Warning
如果同时指定本地文件和 etcd 两种方式,则优先采用本地文件中的 Sinker 规则。
Prometheus 指标暴露¶
Env | 类型 | 是否必需 | 说明 | 取值示例 |
---|---|---|---|---|
DW_PROM_URL | string | N | Prometheus 指标的 URL Path(默认 /metrics ) |
|
DW_PROM_LISTEN | string | N | Prometheus 指标暴露地址(默认 localhost:9090 ) |
|
DW_PROM_DISABLED | boolean | N | 禁用 Prometheus 指标暴露 | true |
磁盘缓存设置¶
Env | 类型 | 是否必需 | 说明 | 取值示例 |
---|---|---|---|---|
DW_DISKCACHE_DIR | file-path | N | 设置缓存目录,该目录一般外挂存储 | path/to/your/cache |
DW_DISKCACHE_DISABLE | boolean | N | 禁用磁盘缓存,如果不禁用缓存,需删除该环境变量 | true |
DW_DISKCACHE_CLEAN_INTERVAL | string | N | 缓存清理间隔,默认 30s | Duration 字符串 |
DW_DISKCACHE_EXPIRE_DURATION | string | N | 缓存过期时间,默认 168h(7d) | Duration 字符串,如 72h 表示三天 |
DW_DISKCACHE_CAPACITY_MB | int | N | Version-1.6.0 设置可用的磁盘空间大小,单位 MB,默认 20GB | 指定 1024 即 1GB |
DW_DISKCACHE_BATCH_SIZE_MB | int | N | Version-1.6.0 设置单个磁盘缓存文件最大大小,单位 MB,默认 64MB | 指定 1024 即 1GB |
DW_DISKCACHE_MAX_DATA_SIZE_MB | int | N | Version-1.6.0 设置单个缓存内容(比如单个 HTTP body)最大大小,单位 MB,默认 64MB,超过该大小的单个数据包,会被丢弃 | 指定 1024 即 1GB |
Tips
设置 DW_DISKCACHE_DISABLE
即可禁用磁盘缓存。
性能相关设置¶
Env | 类型 | 是否必需 | 说明 | 取值示例 |
---|---|---|---|---|
DW_DW_COPY_BUFFER_DROP_SIZE | int | N | 单个超过指定大小(单位字节)的 buffer 会立即清除,避免消耗太多内存。默认值 8MB | 8388608 |
DW_RESERVED_POOL_SIZE | int | N | 内存池基础大小,默认 4096 | 4096 |
Dataway API 列表¶
以下各个 API 详情待补充。
GET /v1/ntp/
¶
- API 说明:获取 Dataway 当前的 Unix 时间戳(单位秒)
POST /v1/write/:category
¶
- API 说明:接收 Datakit 上传的各种采集数据
GET /v1/datakit/pull
¶
- API 说明:处理 Datakit 拉取中心配置(黑名单/Pipeline)请求
POST /v1/write/rum/replay
¶
- API 说明:接收 Datakit 上传的 Session Replay 数据
POST /v1/upload/profiling
¶
- API 说明:接收 Datakit 上传的 Profiling 数据
POST /v1/election
¶
- API 说明:处理 Datakit 的选举请求
POST /v1/election/heartbeat
¶
- API 说明:处理 Datakit 的选举心跳请求
POST /v1/query/raw
¶
处理 DQL 查询请求,简单示例如下:
POST /v1/query/raw?token=<workspace-token> HTTP/1.1
Content-Type: application/json
{
"token": "workspace-token",
"queries": [
{
"query": "M::cpu LIMIT 1"
}
],
"echo_explain": <true/false>
}
返回示例:
{
"content": [
{
"series": [
{
"name": "cpu",
"columns": [
"time",
"usage_iowait",
"usage_total",
"usage_user",
"usage_guest",
"usage_system",
"usage_steal",
"usage_guest_nice",
"usage_irq",
"load5s",
"usage_idle",
"usage_nice",
"usage_softirq",
"global_tag1",
"global_tag2",
"host",
"cpu"
],
"values": [
[
1709782208662,
0,
7.421875,
3.359375,
0,
4.0625,
0,
0,
0,
1,
92.578125,
0,
0,
null,
null,
"WIN-JCHUL92N9IP",
"cpu-total"
]
]
}
],
"points": null,
"cost": "24.558375ms",
"is_running": false,
"async_id": "",
"query_parse": {
"namespace": "metric",
"sources": {
"cpu": "exact"
},
"fields": {},
"funcs": {}
},
"index_name": "",
"index_store_type": "",
"query_type": "guancedb",
"complete": false,
"index_names": "",
"scan_completed": false,
"scan_index": "",
"next_cursor_time": -1,
"sample": 1,
"interval": 0,
"window": 0
}
]
}
返回结果说明:
- 真实的数据位于里层的
series
字段中 name
表示指标集名字(此处查询的是 CPU 指标,如果是日志类数据,则没有该字段)columns
表示返回的结果列名称values
中即columns
中对应的列结果
Info
- URL 请求参数中的 token 可以和 JSON body 中的 token 不同。前者用于验证查询请求是否合法,后者用于确定目标数据所在的工作空间。
queries
字段可以带多个查询,每个查询可以携带额外字段,具体字段列表,参见这里
POST /v1/workspace
¶
- API 说明:处理 Datakit 端发起的工作空间查询请求
POST /v1/object/labels
¶
- API 说明:处理修改对象 Label 请求
DELETE /v1/object/labels
¶
- API 说明:处理删除对象 Label 请求
GET /v1/check/:token
¶
- API 说明:检测 tokken 是否合法
Dataway 指标采集¶
HTTP client 指标采集
如果要采集 Dataway HTTP 请求 Kodo(或者下一跳 Dataway)的指标,需要手动开启 http_client_trace
配置。或者指定环境变量 DW_HTTP_CLIENT_TRACE=true
。
Dataway 自身暴露了 Prometheus 指标,通过 Datakit 自带的 prom
采集器能采集其指标,采集器示例配置如下:
如果集群中有部署 Datakit(需 Datakit 1.14.2 以上版本),那么可以在 Dataway 中开启 Prometheus 指标暴露(Dataway 默认 POD yaml 已经自带):
annotations: # 以下 annotation 默认已添加
datakit/prom.instances: |
[[inputs.prom]]
url = "http://$IP:9090/metrics" # 此处端口(默认 9090)视情况而定
source = "dataway"
measurement_name = "dw" # 固定为该指标集
interval = "10s"
disable_instance_tag = true
[inputs.prom.tags]
service = "dataway"
instance = "$PODNAME"
...
env:
- name: DW_PROM_LISTEN
value: "0.0.0.0:9090" # 此处端口保持跟上面 url 中端口一致
如果采集成功,在观测云「场景」/「内置视图」中搜索 dataway
即可看到对应的监控视图。
Dataway 指标列表¶
以下是 Dataway 暴露的指标,通过请求 http://localhost:9090/metrics
即可获取这些指标,可通过如下命令实时查看(3s)某个具体的指标:
某些指标如果查询不到,可能是相关业务模块尚未运行所致。某些新的指标只在最新版本中存在,此处不再一一标明各个指标的版本信息,以
/metrics
接口返回的指标列表为准。
TYPE | NAME | LABELS | HELP |
---|---|---|---|
SUMMARY | dataway_http_api_body_buffer_utilization |
api |
API body buffer utillization(Len/Cap) |
SUMMARY | dataway_http_api_body_copy |
api |
API body copy |
SUMMARY | dataway_http_api_req_size_bytes |
api,method,status |
API request size |
COUNTER | dataway_http_api_total |
api,status |
API request count |
COUNTER | dataway_http_api_body_too_large_dropped_total |
api,method |
API request too large dropped |
COUNTER | dataway_http_api_with_inner_token |
api,method |
API request with inner token |
COUNTER | dataway_http_api_dropped_total |
api,method |
API request dropped when sinker rule match failed |
COUNTER | dataway_http_api_copy_body_failed_total |
api |
API copy body failed count |
COUNTER | dataway_http_api_signed_total |
api,method |
API signature count |
SUMMARY | dataway_http_api_cached_bytes |
api,cache_type,method,reason |
API cached body bytes |
SUMMARY | dataway_http_api_reusable_body_read_bytes |
api,method |
API re-read body on forking request |
SUMMARY | dataway_http_api_recv_points |
api |
API /v1/write/:category recevied points |
SUMMARY | dataway_http_api_send_points |
api |
API /v1/write/:category send points |
SUMMARY | dataway_http_api_cache_points |
api,cache_type |
Disk cached /v1/write/:category points |
SUMMARY | dataway_http_api_cache_cleaned_points |
api,cache_type,status |
Disk cache cleaned /v1/write/:category points |
COUNTER | dataway_http_api_forked_total |
api,method,token |
API request forked total |
GAUGE | dataway_http_info |
cascaded,docker,http_client_trace,listen,max_body,release_date,remote,version |
Dataway API basic info |
GAUGE | dataway_last_heartbeat_time |
N/A |
Dataway last heartbeat with Kodo timestamp |
GAUGE | dataway_cpu_usage |
N/A |
Dataway CPU usage(%) |
GAUGE | dataway_mem_stat |
type |
Dataway memory usage stats |
GAUGE | dataway_open_files |
N/A |
Dataway open files |
GAUGE | dataway_cpu_cores |
N/A |
Dataway CPU cores |
GAUGE | dataway_uptime |
N/A |
Dataway uptime |
COUNTER | dataway_process_ctx_switch_total |
type |
Dataway process context switch count(Linux only) |
COUNTER | dataway_process_io_count_total |
type |
Dataway process IO count count |
COUNTER | dataway_process_io_bytes_total |
type |
Dataway process IO bytes count |
COUNTER | dataway_http_api_copy_buffer_drop_total |
N/A |
API copy buffer dropped(too large cached buffer) count |
SUMMARY | dataway_http_api_dropped_expired_cache |
api,method |
Dropped expired cache data |
SUMMARY | dataway_http_api_elapsed_seconds |
api,method,status |
API request latency |
SUMMARY | dataway_httpcli_http_connect_cost_seconds |
server |
HTTP connect cost |
SUMMARY | dataway_httpcli_got_first_resp_byte_cost_seconds |
server |
Got first response byte cost |
COUNTER | dataway_httpcli_tcp_conn_total |
server,remote,type |
HTTP TCP connection count |
COUNTER | dataway_httpcli_conn_reused_from_idle_total |
server |
HTTP connection reused from idle count |
SUMMARY | dataway_httpcli_conn_idle_time_seconds |
server |
HTTP connection idle time |
SUMMARY | dataway_httpcli_dns_cost_seconds |
server |
HTTP DNS cost |
SUMMARY | dataway_httpcli_tls_handshake_seconds |
server |
HTTP TLS handshake cost |
SUMMARY | dataway_sinker_cache_key_len |
N/A |
cache key length(bytes) |
SUMMARY | dataway_sinker_cache_val_len |
N/A |
cache value length(bytes) |
COUNTER | dataway_sinker_pull_total |
event,source |
Sinker pulled or pushed counter |
GAUGE | dataway_sinker_rule_cache_miss |
N/A |
Sinker rule cache miss |
GAUGE | dataway_sinker_rule_cache_hit |
N/A |
Sinker rule cache hit |
GAUGE | dataway_sinker_rule_cache_size |
N/A |
Sinker rule cache size |
GAUGE | dataway_sinker_rule_error |
error |
Rule errors |
GAUGE | dataway_sinker_rule_last_applied_time |
source |
Rule last applied time(Unix timestamp) |
SUMMARY | dataway_sinker_rule_cost_seconds |
N/A |
Rule cost time seconds |
COUNTER | diskcache_put_bytes_total |
path |
Cache Put() bytes count |
COUNTER | diskcache_get_total |
path |
Cache Get() count |
COUNTER | diskcache_wakeup_total |
path |
Wakeup count on sleeping write file |
COUNTER | diskcache_seek_back_total |
path |
Seek back when Get() got any error |
COUNTER | diskcache_get_bytes_total |
path |
Cache Get() bytes count |
GAUGE | diskcache_capacity |
path |
Current capacity(in bytes) |
GAUGE | diskcache_max_data |
path |
Max data to Put(in bytes), default 0 |
GAUGE | diskcache_batch_size |
path |
Data file size(in bytes) |
GAUGE | diskcache_size |
path |
Current cache size(in bytes) |
GAUGE | diskcache_open_time |
no_fallback_on_error,no_lock,no_pos,no_sync,path |
Current cache Open time in unix timestamp(second) |
GAUGE | diskcache_last_close_time |
path |
Current cache last Close time in unix timestamp(second) |
GAUGE | diskcache_datafiles |
path |
Current un-read data files |
SUMMARY | diskcache_get_latency |
path |
Get() time cost(micro-second) |
SUMMARY | diskcache_put_latency |
path |
Put() time cost(micro-second) |
COUNTER | diskcache_dropped_bytes_total |
path |
Dropped bytes during Put() when capacity reached. |
COUNTER | diskcache_dropped_total |
path,reason |
Dropped files during Put() when capacity reached. |
COUNTER | diskcache_rotate_total |
path |
Cache rotate count, mean file rotate from data to data.0000xxx |
COUNTER | diskcache_remove_total |
path |
Removed file count, if some file read EOF, remove it from un-read list |
COUNTER | diskcache_put_total |
path |
Cache Put() count |
Docker 模式下的指标采集¶
主机安装有两种模式,一种是宿主机安装,一种是通过 Docker 安装。这里单独说明一下通过 Docker 安装时指标采集的差异。
通过 Docker 安装时,指标暴露的 HTTP 端口会映射到宿主机的 19090 端口(默认情况下),此时其指标采集地址为 http://localhost:19090/metrics
。
如果单独指定了不同的端口,则 Docker 安装时,会在该端口基础上加上 10000,故此处指定的端口不要超过 45535。
此外,Docker 安装时,还会暴露 profile 采集端口,默认映射到宿主机上的端口为 16060,其机制也是在指定的端口基础上加上 10000。
Dataway 自身日志采集和处理¶
Dataway 自身 Log 分为两类,一个是 gin 日志,一个是自身程序日志,通过如下 Pipeline 可将其分离出来:
# Pipeline for dataway logging
# Testing sample loggin
'''
2023-12-14T11:27:06.744+0800 DEBUG apis apis/api_upload_profile.go:272 save profile file to disk [ok] /v1/upload/profiling?token=****************a4e3db8481c345a94fe5a
[GIN] 2021/10/25 - 06:48:07 | 200 | 30.890624ms | 114.215.200.73 | POST "/v1/write/logging?token=tkn_5c862a11111111111111111111111111"
'''
add_pattern("TOKEN", "tkn_\\w+")
add_pattern("GINTIME", "%{YEAR}/%{MONTHNUM}/%{MONTHDAY}%{SPACE}-%{SPACE}%{HOUR}:%{MINUTE}:%{SECOND}")
grok(_,"\\[GIN\\]%{SPACE}%{GINTIME:timestamp}%{SPACE}\\|%{SPACE}%{NUMBER:dataway_code}%{SPACE}\\|%{SPACE}%{NOTSPACE:cost_time}%{SPACE}\\|%{SPACE}%{NOTSPACE:client_ip}%{SPACE}\\|%{SPACE}%{NOTSPACE:method}%{SPACE}%{GREEDYDATA:http_url}")
# gin logging
if cost_time != nil {
if http_url != nil {
grok(http_url, "%{TOKEN:token}")
cover(token, [5, 15])
replace(message, "tkn_\\w{0,5}\\w{6}", "****************$4")
replace(http_url, "tkn_\\w{0,5}\\w{6}", "****************$4")
}
group_between(dataway_code, [200,299], "info", status)
group_between(dataway_code, [300,399], "notice", status)
group_between(dataway_code, [400,499], "warning", status)
group_between(dataway_code, [500,599], "error", status)
if sample(0.1) { # drop 90% debug log
drop()
exit()
} else {
set_tag(sample_rate, "0.1")
}
parse_duration(cost_time)
duration_precision(cost_time, "ns", "ms")
set_measurement('gin', true)
set_tag(service,"dataway")
exit()
}
# app logging
if cost_time == nil {
grok(_,"%{TIMESTAMP_ISO8601:timestamp}%{SPACE}%{NOTSPACE:status}%{SPACE}%{NOTSPACE:module}%{SPACE}%{NOTSPACE:code}%{SPACE}%{GREEDYDATA:msg}")
if level == nil {
grok(message,"Error%{SPACE}%{DATA:errormsg}")
if errormsg != nil {
add_key(status,"error")
drop_key(errormsg)
}
}
lowercase(level)
# if debug level enabled, drop most of them
if status == 'debug' {
if sample(0.1) { # drop 90% debug log
drop()
exit()
} else {
set_tag(sample_rate, "0.1")
}
}
group_in(status, ["error", "panic", "dpanic", "fatal","err","fat"], "error", status) # mark them as 'error'
if msg != nil {
grok(msg, "%{TOKEN:token}")
cover(token, [5, 15])
replace(message, "tkn_\\w{0,5}\\w{6}", "****************$4")
replace(msg, "tkn_\\w{0,5}\\w{6}", "****************$4")
}
set_measurement("dataway-log", true)
set_tag(service,"dataway")
}
Dataway bug report¶
Dataway 自身暴露指标和 profiling 收集入口,我们可以收集这些信息以便于问题排查。
以下信息收集,以实际配置的端口和地址为准,已有命令按照默认参数来列举。
br_dir="dw-br-$(date +%s)"
mkdir -p $br_dir
echo "save bug report to ${br_dir}"
# 依据实际情况,修改这里的配置
dw_ip="localhost" # dataway 指标/profile 暴露的 IP 地址
metric_port=9090 # 指标暴露的端口
profile_port=6060 # profile 暴露的端口
dw_yaml_conf="/usr/local/cloudcare/dataflux/dataway/dataway.yaml"
dw_dot_yaml_conf="/usr/local/cloudcare/dataflux/dataway/.dataway.yaml" # 容器安装时有该文件
# 收集运行时指标
curl -v "http://${dw_ip}:${metric_port}/metrics" -o $br_dir/metrics
# 收集 profiling 信息
curl -v "http://${dw_ip}:${profile_port}/debug/pprof/allocs" -o $br_dir/allocs
curl -v "http://${dw_ip}:${profile_port}/debug/pprof/heap" -o $br_dir/heap
curl -v "http://${dw_ip}:${profile_port}/debug/pprof/profile" -o $br_dir/profile # 此命令会运行 30s 左右
cp $dw_yaml_conf $br_dir/dataway.yaml.copy
cp $dw_dot_yaml_conf $br_dir/.dataway.yaml.copy
tar czvf ${br_dir}.tar.gz ${br_dir}
rm -rf ${br_dir}
运行脚本:
执行完后,会生成类似 dw-br-1721188604.tar.gz 的文件,将该文件拿出来即可。
FAQ¶
请求体太大问题¶
Dataway 对请求体大小有默认设置(默认 64MB),但请求体太大时,客户端会收到一个 HTTP 413 报错(Request Entity Too Large
),如果请求体在合理范围内,可以适当放大该数值(单位字节):
- 设置环境变量
DW_MAX_HTTP_BODY_BYTES
- 在 dataway.yaml 中设置
max_http_body_bytes
如果运行期间出现太大的请求包,在指标和日志中都有体现:
- 指标
dataway_http_too_large_dropped_total
暴露了丢弃的大请求个数 - 搜索 Dataway 日志
cat log | grep 'drop too large request'
,日志会输出 HTTP 请求的 Header 详情,便于进一步了解客户端情况
Warning
在磁盘缓存模块,也有一个最大的数据块写入限制(默认 64MB)。如果增加最大请求体配置,也要一并调整该配置(ENV_DISKCACHE_MAX_DATA_SIZE
),以确保大请求能正确写入磁盘缓存。