Skip to content

VMware

VMware displays cluster status, host status, VM status, and other Metrics.

Configuration

Preparation

  • There is an intranet machine that can access VMware installed with Datakit and Python 3+ environment.
  • The following dependent libraries are required:
    • requests
    • pyvmomi == 7.0
    • openssl == 1.1.1w

Note: Using different package versions will cause package conflicts.

Deployment Process

  1. Enable the python.d collector of Datakit, go to the conf.d/pythond directory under the DataKit installation directory, copy pythond.conf.sample and rename it as pythond.conf. Example as follows:

    # {"version": "1.16.0", "desc": "do NOT edit this line"}
    
    [[inputs.pythond]]
      # Python input name
      name = 'some-python-inputs'  # required
    
      # System environments to run Python
      #envs = ['LD_LIBRARY_PATH=/path/to/lib:$LD_LIBRARY_PATH',]
    
      # Python path (recommended abstract Python path)
      cmd = "/root/anaconda3/envs/py3.9/bin/python" # required. python3 is recommended.
    
      # Python scripts relative path
      dirs = ["vm"]
    

    Note: Here cmd should be changed to your own Python environment address, used to execute Python scripts, dirs is the script storage directory.

  2. Create a directory named after the "Python package name" under the datakit/python.d directory, then create a Python script (*.py) in that directory. Taking the package name vm as an example, its path structure is as follows. Among them, demo.py is the Python script, and the filename of the Python script can be customized:

    datakit
       └── python.d
           ├── vm
              ├── vm.py
    
  3. Write the vm.py script, fill in the following script example, and change vcenter_host, vcenter_port, vcenter_user, and vcenter_password to the corresponding host, port, and user information for collecting VMware data.

    Python Script Example

    from datakit_framework import DataKitFramework
    from pyVim.connect import SmartConnect, Disconnect
    import requests
    from pyVmomi import vim
    import ssl
    import datetime
    import time
    
    
    class vm(DataKitFramework):
        name = "vm"
        interval = 10
        def run(self):   
            print("vm")
            s = ssl.SSLContext(ssl.PROTOCOL_TLSv1)
            s.verify_mode = ssl.CERT_NONE
    
            datakit_url_object = 'http://0.0.0.0:9529/v1/write/custom_object'
            datakit_url_metric = 'http://0.0.0.0:9529/v1/write/metric'
            vcenter_host = "10.200.14.20"
            vcenter_port = 443
            vcenter_user = "reader@zy.ops"
            vcenter_password = "Zhuyun@0906"
    
            # Data is reported in json format to Datakit so a header must be added to the POST request
            header = {
                "Content-Type": "application/json"
            }
    
            # Report data
            dk_object = []
            dk_metric = []
    
            # Connect to the vCenter Server
            c = SmartConnect(host=vcenter_host, user=vcenter_user, pwd=vcenter_password, port=vcenter_port, sslContext=s)
    
            content = c.RetrieveContent()
    
            container = content.rootFolder  # starting point to look into
            viewType = [vim.HostSystem, vim.VirtualMachine]  # object types to look for
            recursive = True  # whether we should look into it recursively
    
            # Get the number and details of vCenters
            vcenter_data = content.rootFolder.childEntity
            print("vCenter count: ", len(vcenter_data))
            for i in vcenter_data:
                dk_metric.append({
                    "measurement": "vmware",
                    "tags": {
                        "vcenter_name": str(i)
                    },
                    "fields": {
                        "vcenter_total": int(len(vcenter_data))
                    },
                    "time": int(time.time())
                })
    
    
            # Get the number and details of datastores
            datastores = content.rootFolder.childEntity[0].datastore
            for ds in datastores:
                dk_metric.append({
                    "measurement": "vmware",
                    "tags": {
                        "vcenter_datastore_name": str(ds.name)
                    },
                    "fields": {
                        "vcenter_datastore_total_capacity": int(ds.summary.capacity),
                        "vcenter_datastore_total_free_space": int(ds.summary.freeSpace),
                        "vcenter_datastore_utilization_rate": int((ds.summary.capacity - ds.summary.freeSpace) / ds.summary.capacity),
                        "vcenter_datastore_total": int(len(datastores))
                    },
                    "time": int(time.time())
                })
    
            containerView = content.viewManager.CreateContainerView(container, viewType, recursive)
    
            children = containerView.view
            print("Cluster count: ", len(children))
            for child in children:
                if isinstance(child, vim.HostSystem):
                    boot_time = child.runtime.bootTime
                    print("datae", datetime.datetime.now(boot_time.tzinfo) - boot_time)
                    print("date2", int((datetime.datetime.now(boot_time.tzinfo) - boot_time).total_seconds()))
                    dk_object.append({
                        "measurement": "vmware_esxi",
                        "tags": {
                            "name": str(child.name),
                            "model": str(child.hardware.systemInfo.model),
                            "vendor": str(child.hardware.systemInfo.vendor),
                            "uptime": str((datetime.datetime.now(boot_time.tzinfo) - boot_time))
                        },
                        "fields": {
                            "cpu_cores": str(child.hardware.cpuInfo.numCpuCores),
                            "memory": str(child.hardware.memorySize)
                        },
                        "time": int(time.time())
    
                    })
                    dk_metric.append({
                        "measurement": "vmware",
                        "tags": {
                            "esxi_name": str(child.name),
                            "esxi_model": str(child.hardware.systemInfo.model),
                            "esxi_vendor": str(child.hardware.systemInfo.vendor)
                        },
                        "fields": {
                            "cpu_cores": int(child.hardware.cpuInfo.numCpuCores),
                            "memory": int(child.hardware.memorySize),
                            "cpu_usage": int(child.summary.quickStats.overallCpuUsage),
                            "mem_usage": int(child.summary.quickStats.overallMemoryUsage),
                            "mem_utilization_rate": int(child.summary.quickStats.overallMemoryUsage / child.hardware.memorySize),
                            "uptime": int((datetime.datetime.now(boot_time.tzinfo) - boot_time).total_seconds())
                        },
                        "time": int(time.time())
                    })
                elif isinstance(child, vim.VirtualMachine):
                    if child.runtime.powerState == 'poweredOn':  # only print VMs that are powered on
                        boot_time = child.runtime.bootTime
                        dk_object.append({
                            "measurement": "vmware_vm",
                            "tags": {
                                "name": str(child.name),
                                "host_name": str(child.guest.hostName),
                                "guest_os": str(child.config.guestFullName),
                                "ip_address": str(child.guest.ipAddress),
                                "uptime": str((datetime.datetime.now(boot_time.tzinfo) - boot_time))
                            },
                            "fields": {
                                "cpu_cores":  str(child.config.hardware.numCPU),
                                "memory": str(child.config.hardware.memoryMB)
                            },
                            "time": int(time.time())
    
                        })
                        dk_metric.append({
                            "measurement": "vmware",
                            "tags": {
                                "vm_name": str(child.name),
                                "vm_host_name": str(child.guest.hostName),
                                "vm_ip_address": str(child.guest.ipAddress)
                            },
                            "fields": {
                                "cpu_cores": int(child.config.hardware.numCPU),
                                "memory": int(child.config.hardware.memoryMB),
                                "cpu_usage": int(child.summary.quickStats.overallCpuUsage),
                                "mem_usage": int(child.summary.quickStats.guestMemoryUsage),
                                "mem_utilization_rate": int(child.summary.quickStats.guestMemoryUsage / child.config.hardware.memoryMB),
                                "disk_usage": int(child.summary.storage.committed),
                                "uptime": int((datetime.datetime.now(boot_time.tzinfo) - boot_time).total_seconds())
                            },
                            "time": int(time.time())
                        })
    
    
            containerView.Destroy()      
     #       response_object = requests.post(datakit_url_object,  headers=header, json=dk_object)
     #       response_metric = requests.post(datakit_url_metric,  headers=header, json=dk_metric)
            in_data = {
                'CO': dk_object,
                'input': 'vmware_esxi,vmware_vm'
            }
            self.report(in_data)
            in_data2 = {
                'M': dk_metric,
                'input': 'vmware'
            }
            self.report(in_data2)
            Disconnect(c)
            print("--------------Success---------------")
    

  4. Restart DataKit:

    sudo datakit service -R
    

Metrics

After configuring VMware monitoring, the default Measurement set is as follows

Metric Metric Name Unit
vcenter_total Center Count Units
vcenter_datastore_total_capacity Center Disk Total Capacity B
vcenter_datastore_total_free_space Center Disk Free Space B
vcenter_datastore_total Center Disk Count Units
cpu_cores CPU Core Count Units
memory Memory Size MB
cpu_usage CPU Usage MHz
mem_usage Memory Usage MB
uptime Uptime Seconds
disk_usage Disk Usage B

Objects

"measurement": "vmware_esxi",
            "tags": {
                "name":  "10.200.14.10",
                "model": "PowerEdge R740",
                "vendor": "Dell Inc.",
                "uptime": "120 days, 6:04:50.399418"
            },
            "fields": {
                "cpu_cores": "20",
                "memory": "410686889984"
            }
"measurement": "vmware_vm",
                "tags": {
                    "name":  "fanjun-test",
                    "host_name": "zy-infra-sh-vm-fanjun",
                    "guest_os": "CentOS 7 (64-bit)",
                    "ip_address": "10.200.14.178",
                    "uptime": "104 days, 5:02:26.586303"
                },
                "fields": {
                    "cpu_cores":  "2",
                    "memory": "4096"
                }

Explanation of some fields:

Field Type Description
name String Hostname
model String Hardware model.
vendor String Hardware vendor
uptime String Uptime
guest_os String Virtual machine version.
ip_address String Virtual machine IP address.
cpu_cores String CPU core count.
memory String Memory size (Byte).

Feedback

Is this page helpful? ×