OpenLIT
OpenLIT 通过简化生成式 AI 和大模型语言(LLMs)的开发流程,并提供全面的可观测性支持,并将可观测性数据上报到观测云。
配置¶
在使用 OTEL 将链路追踪数据发送到 DataKit 之前,请确保已配置 Collector,同时需要调整配置文件customer_tags = ["gen_ai.application_name","gen_ai.request.model","gen_ai.prompt","gen_ai.completion","gen_ai.request.temperature","gen_ai.usage.input_tokens","gen_ai.usage.output_tokens","gen_ai.usage.total_tokens","gen_ai.endpoint","gen_ai.system"]
,如下所示:
[[inputs.opentelemetry]]
## customer_tags will work as a whitelist to prevent tags send to data center.
## All . will replace to _ ,like this :
## "project.name" to send to GuanCe center is "project_name"
customer_tags = ["gen_ai.application_name","gen_ai.request.model","gen_ai.prompt","gen_ai.completion","gen_ai.request.temperature","gen_ai.usage.input_tokens","gen_ai.usage.output_tokens","gen_ai.usage.total_tokens","gen_ai.endpoint","gen_ai.system"]
...
调整完成后,重启 DataKit
安装 OpenLIT SDK¶
pip install openlit
在应用程序中初始化 OpenLIT¶
监控 OpenAI 使用的示例代码:
from openai import OpenAI
import openlit
# Init OpenLit
openlit.init(
otlp_endpoint="http://127.0.0.1:9529/otel",
application_name="openlit_demo"
)
client = OpenAI(
api_key="YOUR_OPENAI_KEY"
)
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": "什么是 LLM 可观测性",
}
],
model="gpt-3.5-turbo",
)
参考资料¶
- OpenLIT quickstart