跳转至

OpenTelemetry



OpenTelemetry (以下简称 OTEL)是 CNCF 的一个可观测性项目,旨在提供可观测性领域的标准化方案,解决观测数据的数据模型、采集、处理、导出等的标准化问题。

OTEL 是一组标准和工具的集合,旨在管理观测类数据,如 trace、metrics、logs 等(未来可能有新的观测类数据类型出现)。

OTEL 提供与 vendor 无关的实现,根据用户的需要将观测类数据导出到不同的后端,如开源的 Prometheus、Jaeger、Datakit 或云厂商的服务中。

本篇旨在介绍如何在 Datakit 上配置并开启 OTEL 的数据接入,以及 Java、Go 的最佳实践。

版本说明:Datakit 目前只接入 OTEL-v1 版本的 otlp 数据。

配置

进入 DataKit 安装目录下的 conf.d/opentelemetry 目录,复制 opentelemetry.conf.sample 并命名为 opentelemetry.conf。示例如下:

[[inputs.opentelemetry]]
  ## ignore_tags will work as a blacklist to prevent tags send to data center.
  ## Every value in this list is a valid string of regular expression.
  # ignore_tags = ["block1", "block2"]

  ## Keep rare tracing resources list switch.
  ## If some resources are rare enough(not presend in 1 hour), those resource will always send
  ## to data center and do not consider samplers and filters.
  # keep_rare_resource = false

  ## By default every error presents in span will be send to data center and omit any filters or
  ## sampler. If you want to get rid of some error status, you can set the error status list here.
  # omit_err_status = ["404"]

  ## compatible ddtrace: It is possible to compatible OTEL Trace with DDTrace trace
  # compatible_ddtrace=false

  ## Ignore tracing resources map like service:[resources...].
  ## The service name is the full service name in current application.
  ## The resource list is regular expressions uses to block resource names.
  ## If you want to block some resources universally under all services, you can set the
  ## service name as "*". Note: double quotes "" cannot be omitted.
  # [inputs.opentelemetry.close_resource]
    # service1 = ["resource1", "resource2", ...]
    # service2 = ["resource1", "resource2", ...]
    # "*" = ["close_resource_under_all_services"]
    # ...

  ## Sampler config uses to set global sampling strategy.
  ## sampling_rate used to set global sampling rate.
  # [inputs.opentelemetry.sampler]
    # sampling_rate = 1.0

  # [inputs.opentelemetry.tags]
    # key1 = "value1"
    # key2 = "value2"
    # ...

  ## Threads config controls how many goroutines an agent cloud start to handle HTTP request.
  ## buffer is the size of jobs' buffering of worker channel.
  ## threads is the total number fo goroutines at running time.
  # [inputs.opentelemetry.threads]
    # buffer = 100
    # threads = 8

  ## Storage config a local storage space in hard dirver to cache trace data.
  ## path is the local file path used to cache data.
  ## capacity is total space size(MB) used to store data.
  # [inputs.opentelemetry.storage]
    # path = "./otel_storage"
    # capacity = 5120

  ## OTEL agent HTTP config for trace and metrics
  ## If enable set to be true, trace and metrics will be received on path respectively, by default is:
  ## trace : /otel/v1/trace
  ## metric: /otel/v1/metric
  ## and the client side should be configured properly with Datakit listening port(default: 9529)
  ## or custom HTTP request path.
  ## for example http://127.0.0.1:9529/otel/v1/trace
  ## The acceptable http_status_ok values will be 200 or 202.
  [inputs.opentelemetry.http]
   enable = true
   http_status_ok = 200
   trace_api = "/otel/v1/trace"
   metric_api = "/otel/v1/metric"

  ## OTEL agent GRPC config for trace and metrics.
  ## GRPC services for trace and metrics can be enabled respectively as setting either to be true.
  ## add is the listening on address for GRPC server.
  [inputs.opentelemetry.grpc]
   trace_enable = true
   metric_enable = true
   addr = "127.0.0.1:4317"

  ## If 'expected_headers' is well configed, then the obligation of sending certain wanted HTTP headers is on the client side,
  ## otherwise HTTP status code 400(bad request) will be provoked.
  ## Note: expected_headers will be effected on both trace and metrics if setted up.
  # [inputs.opentelemetry.expected_headers]
  # ex_version = "1.2.3"
  # ex_name = "env_resource_name"
  # ...

配置好后,重启 DataKit 即可。

目前可以通过 ConfigMap 方式注入采集器配置来开启采集器。

在 Kubernetes 中支持的环境变量如下表:

环境变量名 类型 示例
ENV_INPUT_OTEL_IGNORE_KEYS JSON string ["block1", "block2"]
ENV_INPUT_OTEL_KEEP_RARE_RESOURCE bool true
ENV_INPUT_OTEL_OMIT_ERR_STATUS JSON string ["404", "403", "400"]
ENV_INPUT_OTEL_CLOSE_RESOURCE JSON string {"service1":["resource1"], "service2":["resource2"], "service3":["resource3"]}
ENV_INPUT_OTEL_SAMPLER float 0.3
ENV_INPUT_OTEL_TAGS JSON string {"k1":"v1", "k2":"v2", "k3":"v3"}
ENV_INPUT_OTEL_THREADS JSON string {"buffer":1000, "threads":100}
ENV_INPUT_OTEL_STORAGE JSON string {"storage":"./otel_storage", "capacity": 5120}
ENV_INPUT_OTEL_HTTP JSON string {"enable":true, "http_status_ok": 200, "trace_api": "/otel/v1/trace", "metric_api": "/otel/v1/metric"}
ENV_INPUT_OTEL_GRPC JSON string {"trace_enable": true, "metric_enable": true, "addr": "127.0.0.1:4317"}
ENV_INPUT_OTEL_EXPECTED_HEADERS JSON string {"ex_version": "1.2.3", "ex_name": "env_resource_name"}

注意事项

  1. 建议使用 gRPC 协议,gRPC 具有压缩率高、序列化快、效率更高等优点
  2. Datakit 1.10.0 版本开始,http 协议的路由是可配置的,默认请求路径(Trace/Metric)分别为 /otel/v1/trace/otel/v1/metric
  3. 在涉及到 float/double 类型数据时,会最多保留两位小数
  4. HTTP 和 gRPC 都支持 gzip 压缩格式。在 exporter 中可配置环境变量来开启:OTEL_EXPORTER_OTLP_COMPRESSION = gzip, 默认是不会开启 gzip。
  5. HTTP 协议请求格式同时支持 JSON 和 Protobuf 两种序列化格式。但 gRPC 仅支持 Protobuf 一种。

使用 OTEL HTTP exporter 时注意环境变量的配置,由于 Datakit 的默认配置是 /otel/v1/trace/otel/v1/metric,所以想要使用 HTTP 协议的话,需要单独配置 tracemetric

SDK 常规配置

命令 说明 默认 注意
OTEL_SDK_DISABLED 关闭 SDK false 关闭后将不会产生任何链路指标信息
OTEL_RESOURCE_ATTRIBUTES "service.name=App,username=liu" 每一个 span 中都会有该 tag 信息
OTEL_SERVICE_NAME 服务名,等效于上面 "service.name=App" 优先级高于上面
OTEL_LOG_LEVEL 日志级别 info
OTEL_PROPAGATORS 透传协议 tracecontext,baggage
OTEL_TRACES_SAMPLER 采样 parentbased_always_on
OTEL_TRACES_SAMPLER_ARG 配合上面采样 参数 1.0 0 - 1.0
OTEL_EXPORTER_OTLP_PROTOCOL 协议包括: grpc,http/protobuf,http/json gRPC
OTEL_EXPORTER_OTLP_ENDPOINT OTLP 地址 http://localhost:4317 http://datakit-endpoint:9529/otel/v1/trace
OTEL_TRACES_EXPORTER 链路导出器 otlp

您可以将 otel.javaagent.debug=true 参数传递给 Agent 以查看调试日志。请注意,这些日志内容相当冗长,生产环境下谨慎使用。

链路

Trace(链路)是由多个 span 组成的一条链路信息。 无论是单个服务还是一个服务集群,链路信息提供了一个请求发生到结束所经过的所有服务之间完整路径的集合。

Datakit 只接收 OTLP 的数据,OTLP 有三种数据类型: gRPChttp/protobufhttp/json ,具体配置可以参考:

# OpenTelemetry 默认采用 gPRC 协议发送到 Datakit
-Dotel.exporter=otlp \
-Dotel.exporter.otlp.protocol=grpc \
-Dotel.exporter.otlp.endpoint=http://datakit-endpoint:4317

# 使用 http/protobuf 方式
-Dotel.exporter=otlp \
-Dotel.exporter.otlp.protocol=http/protobuf \
-Dotel.exporter.otlp.traces.endpoint=http://datakit-endpoint:9529/otel/v1/trace \
-Dotel.exporter.otlp.metrics.endpoint=http://datakit-endpoint:9529/otel/v1/metric 

# 使用 http/json 方式
-Dotel.exporter=otlp \
-Dotel.exporter.otlp.protocol=http/json \
-Dotel.exporter.otlp.traces.endpoint=http://datakit-endpoint:9529/otel/v1/trace \
-Dotel.exporter.otlp.metrics.endpoint=http://datakit-endpoint:9529/otel/v1/metric

链路采样

可以采用头部采样或者尾部采样,具体可以查看两篇最佳实践:

示例

Datakit 目前提供了如下两种语言的最佳实践:

指标

OpenTelemetry Java Agent 从应用程序中通过 JMX 协议获取 MBean 的指标信息,Java Agent 通过内部 SDK 报告选定的 JMX 指标,这意味着所有的指标都是可以配置的。

可以通过命令 otel.jmx.enabled=true/false 开启和关闭 JMX 指标采集,默认是开启的。

为了控制 MBean 检测尝试之间的时间间隔,可以使用 otel.jmx.discovery.delay 命令,该属性定义了在第一个和下一个检测周期之间通过的毫秒数。

另外 Agent 内置的一些三方软件的采集配置。具体可以参考: GitHub OTEL JMX Metric

opentelemetry

  • 标签
Tag Description
action gc 动作
area 堆/非堆
cause gc 原因
container.id 容器 ID
description 指标说明
exception 异常信息
gc gc 类型
host 主机名
http.flavor HTTP 版本
http.method HTTP 请求类型
http.route HTTP 请求路由
http.scheme http/https
http.target HTTP 请求目标
id jvm 类型
instrumentation_name 指标名
level 日志级别
main-application-class main 方法入口
method HTTP 请求类型
name 线程池名称
net.protocol.name 网络协议名称
net.protocol.version 网络协议版本
os.description 操作系统版本信息
os.type 操作系统类型
outcome http 结果
path 磁盘路径
pool jvm 池类型
process.command_line 进程启动命令
process.executable.path 可执行文件路径
process.runtime.description 进程运行时说明
process.runtime.name jvm 池类型
process.runtime.version jvm 池类型
service.name 服务名称
spanProcessorType span 处理器类型
state 线程状态
status HTTP 状态码
telemetry.auto.version 代码版本
telemetry.sdk.language 语言
telemetry.sdk.name SDK 名称
telemetry.sdk.version SDK 版本
uri http 请求路径
  • 指标列表
Metric Description Type Unit
application.ready.time Time taken (ms) for the application to be ready to service requests float msec
application.started.time Time taken (ms) to start the application float msec
disk.free Usable space for path float B
disk.total Total space for path float B
executor.active The approximate number of threads that are actively executing tasks float count
executor.completed The approximate total number of tasks that have completed execution float count
executor.pool.core The core number of threads for the pool float B
executor.pool.max The maximum allowed number of threads in the pool float count
executor.pool.size The current number of threads in the pool float B
executor.queue.remaining The number of additional elements that this queue can ideally accept without blocking float count
executor.queued The approximate number of tasks that are queued for execution float count
http.server.active_requests The number of concurrent HTTP requests that are currently in-flight float count
http.server.duration The duration of the inbound HTTP request float ns
http.server.requests The http request count float count
http.server.requests.max None float B
http.server.response.size The size of HTTP response messages float B
jvm.buffer.count An estimate of the number of buffers in the pool float count
jvm.buffer.memory.used An estimate of the memory that the Java virtual machine is using for this buffer pool float B
jvm.buffer.total.capacity An estimate of the total capacity of the buffers in this pool float B
jvm.classes.loaded The number of classes that are currently loaded in the Java virtual machine float count
jvm.classes.unloaded The total number of classes unloaded since the Java virtual machine has started execution float count
jvm.gc.live.data.size Size of long-lived heap memory pool after reclamation float B
jvm.gc.max.data.size Max size of long-lived heap memory pool float B
jvm.gc.memory.allocated Incremented for an increase in the size of the (young) heap memory pool after one GC to before the next float B
jvm.gc.memory.promoted Count of positive increases in the size of the old generation memory pool before GC to after GC float B
jvm.gc.overhead An approximation of the percent of CPU time used by GC activities over the last look back period or since monitoring began, whichever is shorter, in the range [0..1] int count
jvm.gc.pause Time spent in GC pause float nsec
jvm.gc.pause.max Time spent in GC pause float msec
jvm.memory.committed The amount of memory in bytes that is committed for the Java virtual machine to use float B
jvm.memory.max The maximum amount of memory in bytes that can be used for memory management float B
jvm.memory.usage.after.gc The percentage of long-lived heap pool used after the last GC event, in the range [0..1] float percent
jvm.memory.used The amount of used memory float B
jvm.threads.daemon The current number of live daemon threads float count
jvm.threads.live The current number of live threads including both daemon and non-daemon threads float B
jvm.threads.peak The peak live thread count since the Java virtual machine started or peak was reset float B
jvm.threads.states The current number of threads having NEW state float B
log4j2.events Number of fatal level log events float count
otlp.exporter.exported OTLP exporter to remote int count
otlp.exporter.seen OTLP exporter int count
process.cpu.usage The "recent cpu usage" for the Java Virtual Machine process float percent
process.files.max The maximum file descriptor count float count
process.files.open The open file descriptor count float B
process.runtime.jvm.buffer.count The number of buffers in the pool float count
process.runtime.jvm.buffer.limit Total capacity of the buffers in this pool float B
process.runtime.jvm.buffer.usage Memory that the Java virtual machine is using for this buffer pool float B
process.runtime.jvm.classes.current_loaded Number of classes currently loaded float count
process.runtime.jvm.classes.loaded Number of classes loaded since JVM start int count
process.runtime.jvm.classes.unloaded Number of classes unloaded since JVM start float count
process.runtime.jvm.cpu.utilization Recent cpu utilization for the process float B
process.runtime.jvm.gc.duration Duration of JVM garbage collection actions float nsec
process.runtime.jvm.memory.committed Measure of memory committed float B
process.runtime.jvm.memory.init Measure of initial memory requested float B
process.runtime.jvm.memory.limit Measure of max obtainable memory float B
process.runtime.jvm.memory.usage Measure of memory used float B
process.runtime.jvm.memory.usage_after_last_gc Measure of memory used after the most recent garbage collection event on this pool float B
process.runtime.jvm.system.cpu.load_1m Average CPU load of the whole system for the last minute float percent
process.runtime.jvm.system.cpu.utilization Recent cpu utilization for the whole system float percent
process.runtime.jvm.threads.count Number of executing threads float count
process.start.time Start time of the process since unix epoch float B
process.uptime The uptime of the Java virtual machine int sec
processedSpans The number of spans processed by the BatchSpanProcessor int count
queueSize The number of spans queued int count
system.cpu.count The number of processors available to the Java virtual machine int count
system.cpu.usage The "recent cpu usage" for the whole system float percent
system.load.average.1m The sum of the number of runnable entities queued to available processors and the number of runnable entities running on the available processors averaged over a period of time float count

更多文档

文档评价

文档内容是否对您有帮助? ×